# Permutations & Combinations

Permutations & Combinations

In mathematics, the notion of permutation relates to the act of permuting, or rearranging, members of a set into a particular sequence or order (unlike combinations, which are selections that disregard order). For example, there are six permutations of the set {1,2,3}, namely (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), and (3,2,1). As another example, an anagram of a word, all of whose letters are different, is a permutation of its letters. The study of permutations of finite sets is a topic in the field of combinatorics.

"Combin" redirects here. For the mountain massif, see Grand Combin.
For other uses, see Combination (disambiguation).
In mathematics, a combination is a way of selecting members from a grouping, such that (unlike permutations) the order of selection does not matter. In smaller cases it is possible to count the number of combinations. For example given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange. More formally, a k-combination of a set S is a subset of k distinct elements of S. If the set has nelements, the number of k-combinations is equal to the binomial coefficient

This video gives you the basic idea of what permutations and combinations are exactly

Here is a small video of solved questions of colour's which is quite interesting and self explanatory